- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
31
- Author / Contributor
- Filter by Author / Creator
-
-
Albreiki, Fahed (4)
-
Srivastava, Samanvaya (4)
-
Göckler, Tobias (2)
-
Colón, Yamil J. (1)
-
Grimm, Alisa (1)
-
Kohl, Phillip_A (1)
-
Li, Defu (1)
-
Li, Youli (1)
-
Mecklenburg, Felix (1)
-
Odenheimer, Arthur (1)
-
Pyone, Khin_C (1)
-
Schepers, Ute (1)
-
Senebandith, Holly (1)
-
Shi, Jiale (1)
-
Urueña, Juan Manuel (1)
-
Whitmer, Jonathan K. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Albreiki, Fahed; Göckler, Tobias; Srivastava, Samanvaya (, Chemical Communications)We report the synthesis of catechol-functionalized symmetric triblock polymers comprising densely functionalized catechol endblocks using anionic ring-opening polymerization (AROP) and thiol–ene click chemistry.more » « lessFree, publicly-accessible full text available December 12, 2025
-
Shi, Jiale; Albreiki, Fahed; Colón, Yamil J.; Srivastava, Samanvaya; Whitmer, Jonathan K. (, Journal of Chemical Theory and Computation)Machine learning (ML) accelerates the exploration of material properties and their links to the structure of the underlying molecules. In previous work [Shi et al. ACS Applied Materials & Interfaces 2022, 14, 37161−37169.], ML models were applied to predict the adhesive free energy of polymer–surface interactions with high accuracy from the knowledge of the sequence data, demonstrating successes in inverse-design of polymer sequence for known surface compositions. While the method was shown to be successful in designing polymers for a known surface, extensive data sets were needed for each specific surface in order to train the surrogate models. Ideally, one should be able to infer information about similar surfaces without having to regenerate a full complement of adhesion data for each new case. In the current work, we demonstrate a transfer learning (TL) technique using a deep neural network to improve the accuracy of ML models trained on small data sets by pretraining on a larger database from a related system and fine-tuning the weights of all layers with a small amount of additional data. The shared knowledge from the pretrained model facilitates the prediction accuracy significantly on small data sets. We also explore the limits of database size on accuracy and the optimal tuning of network architecture and parameters for our learning tasks. While applied to a relatively simple coarse-grained (CG) polymer model, the general lessons of this study apply to detailed modeling studies and the broader problems of inverse materials design.more » « less
-
Göckler, Tobias; Albreiki, Fahed; Li, Defu; Grimm, Alisa; Mecklenburg, Felix; Urueña, Juan Manuel; Schepers, Ute; Srivastava, Samanvaya (, ACS Applied Polymer Materials)
An official website of the United States government
